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Selection of the best set of scales is problematic when developing signal-driven approaches

for pixel-based image segmentation. Often, different possibly conflicting criteria need to be

fulfilled in order to obtain the best trade-off between uncertainty (variance) and location

accuracy. The optimal set of scales depends on several factors: the noise level present

in the image material, the prior distribution of the different types of segments, the

class-conditional distributions associated with each type of segment as well as the actual

size of the (connected) segments. We analyse, theoretically and through experiments, the

possibility of using the overall and class-conditional error rates as criteria for selecting

the optimal sampling of the linear and morphological scale spaces. It is shown that the

overall error rate is optimized by taking the prior class distribution in the image

material into account. However, a uniform (ignorant) prior distribution ensures constant

class-conditional error rates. Consequently, we advocate for a uniform prior class

distribution when an uncommitted, scale-invariant segmentation approach is desired.

Experiments with a neural net classifier developed for segmentation of dynamic magnetic

resonance (MR) images, acquired with a paramagnetic tracer, support the theoretical

results. Furthermore, the experiments show that the addition of spatial features to the

classifier, extracted from the linear or morphological scale spaces, improves the

segmentation result compared to a signal-driven approach based solely on the dynamic

MR signal. The segmentation results obtained from the two types of features are compared

using two novel quality measures that characterize spatial properties of labelled images.
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Introduction

Segmentation of an image can in many situations be

considered a pattern recognition problem where each

pixel (or voxel) is to be assigned a specific label by a

classifier. Techniques from statistical pattern recogni-

tion have in the past been used in many different

ways to segment images. Two frequently occurring

segmentation tasks are object recognition (e.g., coin

recognition1) and texture segregation (e.g., feature

detection in cartographic images2). Different types of

approaches have been developed for solving such

segmentation problems. An important distinction

should be made between approaches that are signal-

driven,3 feature-driven4,5 and modular approaches;6 the

latter often combine signal- and feature-driven meth-

ods. Which of the three types of approach best solves a

particular segmentation task depends on the prior

knowledge of the problem at hand and of the degrees

of freedom that are present in the underlying image

material. In many practical segmentation problems,
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concomitant variations in position, orientation and size

impede a broad application of the developed appro-

ach. In (2D) perspective images, additional degrees of

freedom such as slant and tilt often need to be taken

into account. In the following, we restrict the scope to

segmentation that is invariant with respect to the three

affine image transformations: translation, rotation and

scaling.

Generally, both signal- and feature-driven appro-

aches cope with variations in position by convolution.

A window is slid across the image and its central pixel/

voxel is assigned the most likely class label based on,

for example, the contents of the window7 or on a

derived feature vector.8 In the case of non-isotropic

patterns, rotation invariance needs to be incorporated

into the segmentation algorithm too. A frequently

applied technique for incorporating rotation invariance

into signal-driven segmentation approaches is prepro-

cessing with the Karhunen–Loève transform (principal

component analysis).1,9,10 For feature-driven segment-

ation approaches, application of rotation-invariant

features—e.g., the moments of Hu,11 Zernike moments12

or Fourier descriptors13—automatically ensures that the

segmentation approach gives the same result regard-

less of how the image is oriented.

Scale-invariant segmentation is, in general, more dif-

ficult to achieve, partly because of the discrete nature

of digital images. Appropriate rescaling of a sampled

signal requires an interpolation scheme.14 However,

Nyquist’s criterion imposes a natural limit to the

resolution to which the image can be scaled. Instead

of rescaling the image, scale-invariant segmentation

can be obtained by, for example, including image

patches at different scales in the training set.15 Another

approach entails transforming the image by an invar-

iant mapping such as the Fourier–Mellin trans-

form.16,17 Scale-invariant segmentation can also be

obtained by training a classifier based on features that

eliminate changes in scale. Such scale-invariant fea-

tures include wavelets,5 features from the linear scale

space18 and different statistical moments.19,20 Statistical

moments have the disadvantage that they are sensitive

to noise and distortions. For signal-driven segmenta-

tion algorithms that are based on a wavelet decom-

position or a stack of scaled images, the classifier needs

to learn variations in scale explicitly, which means that

changes in scale are regarded as intra-class variation.

When a set of features computed at a number of

different scales is provided as input to a classifier, not

all scales will contribute equally to making the best

distinction between the different segments. In previous

articles, we suggested to use a feature selection

mechanism for identifying the best sampling scheme

of the scale space.9,21 In this article, we will perform a

theoretical analysis of the problem of scale selection for

signal-driven segmentation algorithms. The derived

results are verified by a set of experiments with a

sequence of dynamic magnetic resonance (MR) images.

In the following, we will first reformulate segmenta-

tion as a classification problem. We then establish a

mathematical framework for Bayesian inference in

which it is shown how the minimal error rate Bayesian

classifier can be used to perform scale selection. Within

this framework, we show that selection of the optimal

set of scales requires choosing an appropriate trade-off

between bias and variance. Moreover, it will be shown

that an uncommitted, invariant segmentation algo-

rithm needs to be trained with a uniform prior class

distribution. An uncommitted algorithm is desired

when there is no information available regarding the

prior distribution of the pixels belonging to the

different types of segments.

We investigate the theoretical results in a set of

experiments where a pattern classifier (neural network)

is developed for scale-invariant segmentation of dyna-

mic perfusion MR images. Some theoretical results

regarding scale invariance are tested on synthetic

images composed of samples from real MR images.

Background

Define an image as a high-dimensional manifold I(x),

with x=(x1, ..., xd), xisXi. In the sequel, we first define

minimal error rate classification. It is subsequently

shown how a minimal error rate classifier can segment

an image.

Minimal Error Rate Classification

Let z denote an n-dimensional vector consisting of

continuous features. Bayes’ classification rule is

defined as22

P(vj zj )~
P(vj)p(z vj

�� )P
i

P(vi)p(z vij )
ð1Þ

with P(vj), j=1, ..., c, and P(vj|z) the prior and

posterior probabilities that the vector z belongs to

class j, respectively, and p(z|vj) the class-conditional

probability density function of class j. In case all
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misclassifications are considered inducing the same

loss, the vector z should be assigned the class label

with the maximal posterior probability, oj=P(vj|z):

class(o)~
j : Vi=j, oi<oj

min j j~ argmaxi (oi)jf g : else

�
ð2Þ

This classification function is called the winner-takes-

all rule and results in a partitioning of the feature

space into disjoint regions Rj:
23

Rj~ z[<d Pj (vj)p(z vj

�� ) > P(vi)p(z vij ), Vi=j
� �

ð3Þ

The Bayesian classifier that segments the feature space

according to the partitioning R1, ..., Rc, results in the

minimal error rate e*:22

e�~1{
X
j

P(vj)P(z[Rj vj

�� ) ð4Þ

with P(z[Rj vj

�� )~
Ð
Rj

P(z vj

�� )dz. Define also the class-

conditional error rate evj by

evj
~1{P(z[Rj vj

�� ) ð5Þ

with the conditional probability P(zsRj|vj)=P(zsRj,

vj)/P(vj).
In practice, the posterior probabilities P(vj|z) are

estimated by a classifier that approximates the optimal

mapping N: Rnp[0,1]c, with c the number of classes

that need to be discerned.

Signal-Driven Segmentation

Signal-driven segmentation of the image I(x) entails a

partitioning of the image elements (pixels or voxels)

into clusters that correspond to the desired segmenta-

tion result. Segmentation can be seen as a classification

task, which has as its purpose the assignment of a label

to each image element. Define the segmented (labelled)

image by an implicit convolution:

S(x)~class(N(I(x))), x[(X1|X2 .. .Xd) ð6Þ

with o=N(x) denoting the classifier. A connected

cluster of image elements in S(x) that are assigned the

same label is considered one segment.

Segmentation Using Scale
Space Features

In the sequel, we give a brief introduction to the linear

scale space and show how a Taylor expansion can be

used to capture the local geometric structure of an

image.

The Linear Scale Space

A widely applied framework for image analysis that

takes explicitly the scale of image features into account,

is the linear scale space.24–27 In the linear scale space, a

stack of images is formed as a function of an increasing

inner scale t. The two-dimensional linear scale space is

based on the linear diffusion equation:25

LI(x1,x2,t)
Lt

~D(2,2)I(x1,x2,t)~+Ix
1
z+Ix

2
ð7Þ

where +Ix1 and +Ix2 denote the second-order deriva-

tives of I(x1,x2,t) in the x1 and x2 direction, respectively,

and D(2,2) the second-order differential operator. The

normalized Gaussian kernel is defined as

G(x,t)~
1ffiffiffiffiffiffiffi
2pt

p exp {
x.x
2t

� �
ð8Þ

with x=(x1,x2)
T and t denoting the variance (width) of

the kernel. The integral
Ð
G(x; t)dx~1, which means

that convolving a signal with the Gaussian kernel, I*G,

does not effect its average intensity level. The general-

ization of the linear scale space to d>2 dimensions,

x=(x1, x2, ..., xd)
T, is straightforward.

Taylor Expansion Features

When I(x) is a continuous, analytical function and all

partial derivatives with respect to x are defined, it can

be approximated in a neighbourhood around x0 by a

multidimensional Taylor expansion:28

I(x{x0)%I(x0)z
X
h[L

DhI(x0)
(x{x0)h

h!
ð9Þ

with h an element in L, a set of multi-indices, and

Dh the vectorial derivative with respect to the set

{h1, ..., hd}, e.g., h=(1,0, ..., 0)T denotes the first-

order derivative with respect to x1. The notion

(x{x0)h~(x1{x01)
h1 . . .(xd{x0d)

hd and h!=h1!...hd! From

Taylor’s theorem it follows that when the number of

terms goes towards infinity the approximation, equa-

tion (9), becomes exact, given the assumptions of

continuity and differentiability of I in x0. Conse-

quently, the manifold I(x) can in the limit be character-

ized in the point x0. This property of Taylor’s

expansion implies that optimal minimal error rate
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segmentation of an image can in theory be based on

the complete set of vectorial derivatives DhI(x), hsL,

xsX. (It is well known that in many cases a Taylor

expansion is not the most compact polynomial approx-

imation of a differentiable function, for a discussion

see, for example, Ralston.29)

Let us define the complete set of derivatives

I(x):
S
h[L

DhI(x), the so-called N-jet,24 and assume that

the image element is classified by Bayes’ rule:

P(vj I(x)j )~
P(vj)p(I(x) vj

�� )P
i

P(vi)p(I(x) vij )
ð10Þ

The minimal error rate that can be obtained follows

from equation (4):

e�~1{
Xc

j~1

P(vj)P(I(x)[Rj vj

�� ) ð11Þ

with Rj={I(x)| P(vj) p(I(x)|vj)>P(vi) p(I(x)|vi), Yilj}.

Hence, e* is the minimal error rate that can be obtained

with the set of derivative features specified by the

dimensionality of L, i.e., the number of derivatives

included in the feature vector. From the definition of

Rj and the winner-takes-all rule (2) it follows that the

prior and (overlapping) class-conditional distributions

jointly determine the error rate that is obtained. As a

consequence, the classification result with the minimal

error rate e* can only be obtained when P(vj), j=1, ...,

c, constitute the probabilities that the patterns belong

to the c different classes.

Assume that the prior distribution of the c classes in

the training set is given by P(vj), j=1, ..., c. The

resulting classifier partitions the feature space into the

disjoint regions, R1, ..., Rc, as defined in equation (3).

Assume further that in an actual image to be seg-

mented, I, the prior distribution of occurrence of the

different segments, is given by PI(vj). If the observed

prior distribution in the image I differs from that in the

training set, Zjs{1, ..., c}, P(vj)lPI(vj), we can show

that segmentation of I using Bayes rule, equation (10),

results in an error rate e(PI(vj)) that is always larger

than or, at best, equal to the optimal error rate e*.

Theorem 1. The realized probability of error is always larger

than or equal to the minimal error rate, e(PI(v1), ...,

PI(vc))ie*, in the case of overlapping class-conditional

distributions, p(I(x)|vj), j=1, ..., c.

Proof. It follows from Duda and Hart22 that the integral

e�~

ð
<d

P(error I(x)j )p(I(x))dx

~1{
Xc

j~1

P(vj)P(I(x)[Rj vj

�� )

ð12Þ

should be as small as possible for every x which

implies the use of the winner-takes-all rule, equa-

tion (2), i.e., the class label with the maximal poster-

ior probability, P(vj|I(x)), should always be assigned

to I(x). Now, from McMichael30 follows the exact

correction for the novel prior probability by the

formula

PI(vj I(x)j )~

PI(vj)

P(vj)
P(vj I(x)j )

PI(vj)

P(vj)
P(vj I(x)j )z

PI(vj)

P(vj)
P(vj I(x)j )

ð13Þ

with P(vj)~Si=jP(vi) and P(vj I(x)j )~Si=jP(vi I(x))j .

Classification of image elements by applying equation

(2) to PI(vj|I(x0)) gives the optimal segmentation result.

In the case of overlapping class-conditional distribu-

tions, P(vj|I(x))lPI(vj|I(x)), when Zj: P(vj)lPI(vj).

Consequently, RI,jlRj, with RI,j={I(x)|PI(vj|I(x))>
PI(vi|I(x)), Yilj}. Thus, for the error rate it holds that

e(PI(vj))~1{
Xc

j~1

PI(vj)P(I(x)[Rj vj

�� )§e� ð14Þ

with the minimal error rate being

e�~1{
Xc

j~1

PI(vj)P(I(x)[RI,j vj

�� ) ð15Þ

%

A direct consequence of Theorem 1 is that regardless of

which features are provided as input to the Bayes’

classifier, when the prior class distribution of the

patterns differs from that of the training set used to

build the classifier, the classification result will have an

inferior overall error rate (in the case of overlapping

class-conditional distributions and P(vj)>0, PI(vj)>0,

j=1, ..., c). It is, however, possible to correct the

classifier for a changed, prior distribution by means of

the formula in equation (13).

We can furthermore prove the following lemma

regarding the class-conditional error rate:

Lemma 2. The class-conditional probability of error evj
is

unchanged for any prior class distribution, PI(vj).

Proof. From the definition of the overall error rate
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1{e�~
Xc

j~1

ð
Rj

p(I(x) vj

�� )PI(vj)dx ð16Þ

follows the class-conditional error rate evj

1{evj
~

Ð
Rj
p(I(x) vj

�� )PI(vj)dxÐ
<d p(I(x) vj

�� )PI(vj)dx
ð17Þ

Using Bayes’ rule, the denominator may be rewritten

as ð
<d

p(I(x) vj

�� )PI(vj)dx~

ð
<d

p(vj I(x)j )PIðI(x)Þdx ð18Þ

which, according to the conditioning property, yields

PI(vj). So

1{evj
~

Ð
Rj
p(I(x) vj

�� )PI(vj)dx

PI(vj)
~

ð
Rj

p(I(x) vj

�� )dx ð19Þ

which, for a given classifier, R1, ..., Rc, is independent

from the prior probability distribution in a particular

image I, PI(vj), j=1, ..., c. %

This lemma shows that the error rate per class remains

constant irrespective of the actual class distribution in

an image PI(vj).

Segmentation under Zooming

We will now investigate the effect of changing the field

of view in an image. First, we need to define the

magnification function, M, which is responsible for

zooming the image, M: I(x)rR+pIk(x):

I0(x)~M(I(x),k), xi[Xi ð20Þ

where M(I(x),1)=I(x). Realizing that the magnification

function will in most cases lead to a different prior

distribution of the segments, PM(I,k)(vj), it is clear that

zooming will, in general, lead to an inferior overall

error rate, unless the posterior probabilities are cor-

rected for the novel prior probability distribution. We

formulate two corollaries:

Corollary 3. Pixel-based segmentation algorithms based on

statistical pattern classification give a higher overall error

rate e(PI(vj)) than the minimal error rate e*, when the prior

probability PI(vj) of one or more of the segments differs

between training and test sets, e.g., as a result of zooming.

Corollary 4. Pixel-based segmentation algorithms based on

statistical pattern classification give the same class-

conditional error rate error evj
for any prior probability

distribution, PI(vj), j=1, ..., c.

As a consequence, when the accumulated size of a

segment increases or decreases, the overall error rate

becomes inferior whereas the relative error per type

of segment remains constant. It should be noticed

that it is not the magnification operation itself that

can cause the prior probabilities of the different seg-

ments to change. The prior probabilities change

because an image is a discrete signal with a fixed

sampling scheme. Hence, zooming in on, for example,

a certain specific texture implies that the other text-

ures comprise a smaller part of the image content (the

field of view). It follows directly from Lemma 2 that

the class-conditional error rates evj
, j=1, ..., c, remain

constant irrespective of which magnification factor k is

chosen.

Scale Selection in the Discrete
Scale Space

Discrete Scale Space

In digital image processing, the image I(x) is a discrete

signal with a finite number of sample points. Compu-

tation of derivatives of a discretely sampled signal is

an ill-posed problem. In the linear scale space, differ-

entiation is performed by convolution with derivatives

of the Gaussian kernel, which transforms differentia-

tion into a well-posed problem.24 It has also been

shown that a convolution with Gaussian derivative

kernels satisfies equation (7). Hence, regularized differ-

entiation of a discrete image relies on the equivalence

DhI(x)*G(x;t)=I(x)*D
hG(x;t), with * indicating the con-

volution operation. The crux in the linear scale space

lies in the commutative properties of these two steps

because one can instead differentiate the (blurred)

Gaussian kernel and subsequently perform the con-

volution with the image.

In the discrete case, we can rewrite the Taylor

expansion, equation (9), as

It(x{x0)%I(x0)z
X
h[L

(DhG(x0; t) � I(x0)) (x{x0)h

h!
ð21Þ

in which the convolution with the Gaussian derivative

operator facilitates the regularized differentiation of

I(x), for x=x0. Note that in the continuous case

I(x)*D
hG(x;t)pDhI(x) for tp0+. We will now define

the discrete equivalent of I(x), the complete set of
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derivatives computed for a set of different scales,

I(x0,S):
S
t[S

S
h[L

DhG(x0; t) � I(x0), with S=(t1, ..., ts)
T

denoting the set of scales at which the derivatives are

computed. This set of derivatives is called the discrete

N-jet.24 The discrete Taylor expansion, equation (21),

differs from its continuous counterpart, equation (9),

because of the differential operator which is used to

compute the regularized derivatives pertaining to the

discrete image I(x). As a result, there exists a minimal

scale at which images can be segmented. Based on an

analysis of the density of local extrema in the con-

tinuous and the discrete scale spaces, Lindeberg

computed the minimal scale at which these two

density functions correspond.31 His analysis indicates

that for a value of t below 0.58482, the continuous

analysis is not a valid approximation of its discrete

counterpart. Moreover, a reliable and stable computa-

tion of derivatives requires even more blurring; the

higher the derivative, the more regularization is

required.32

Within the framework of the linear scale space

theory, scale itself is treated as a free parameter that

is varied across all possible scales.31 The scale at which

a particular scale space feature detector (e.g., a junction

detector) gives the maximal response, is considered the

natural scale of the located feature. However, whereas

the method for scale selection proposed by Lindeberg31

and elaborated in Lindeberg33 works well for noise-

free, sharp images, his experiments also show that

either a slight blur or a perturbation by noise will

result in a different natural scale being selected.33 This

is caused by the trade-off between bias and variance,

which is implicitly made during scale selection.

Blurring with a wide Gaussian kernel—the generating

function in the linear scale space—results in a robust

detection result, which is insensitive to the random

components in the high-frequency noise in the image.

However, the location accuracy of a feature detector

operating at a coarse scale is poorer than the accuracy

obtained by the same detector applied at a finer scale.31

Although much blurring suppresses high-frequency

noise, the finer-scaled edges in the image migrate—the

extent of the migration increases with the width of the

kernel used for blurring the image. This migration is

essentially a location bias. It is clear that in the presence

of noise the choice of an appropriate scale in a seg-

mentation approach enforces a trade-off between

location bias and variance. Recognizing that scale

selection remains an ill-posed problem in signal-

driven segmentation, we propose to let a Bayesian

classifier perform scale selection by optimization of an

error criterion.

Scale Selection: Balancing Between
Bias and Variance

Computation of the (derivative) features in the linear

scale space essentially consists of two steps: blurring

(regularization) with the Gaussian kernel followed by

differentiation of the image. In the sequel, we will

study the effect of blurring the image in the presence of

additive, Gaussian noise.

Define the ‘noisy’ image Ie(x) as

Ie(x)~I(x)ze(x; s2) ð22Þ

with e(x;s2) an additive, Gaussian-distributed noise

term, e(x;s2)yU(me, s2), with a zero mean me and a

variance s2. Blurring the image Ie(x) with the Gaussian

kernel G with the scale parameter t yields

Ie(x) � G(x; t)~
ð
x0[X

Ie(x{x0).G(x0; t)dx0 ð23Þ

which equalsð
x0[X

(I(x{x0)ze(x{x0; s2)).G(x0; t)dx0 ð24Þ

and ð
x0[X

I(x{x0).G(x0; t)ze(x{x0; s2).G(x0; t)dx0 ð25Þ

This convolution integral partitions into

Ie(x) � G(x; t)~
ð
x0[X

I(x{x0).G(x0; t)dx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bias term

z

ð
x0[X

e(x{x0; s2).G(x0; t)dx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variance term

ð26Þ

The bias term represents the part of the original (noise-

free) image that is retained, i.e., the image after high-

frequentcy details have been removed. The variance

term indicates the result of blurring away the additive

noise. The following property holds:

Proposition 5 The variance term of Ie(x)*G(x;t) appro-

aches me for tp‘. When me=0, the variance term vanishes.

Proof. A convolution with the Gaussian function can in

the Fourier space be written as `{e(x;s2)*G(x;t)}=
`{e(x;s2)}e`{G(x;t)}. The Fourier transform of the
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Gaussian function `{G(x;t)} is also a Gaussian function.

For tp‘, `{G(x;t)} becomes a Dirac pulse, for a two-

dimensional image d(u,v). As d(0,0)=1 and d(u,v)=0,

Y(u,v)l(0,0), solely the mean me is retained from

`{e(x;s2)}ed(u,v)=Xi me, with Xi, the number of pixels

in a row in the quadratic image I(x). It follows directly

that when me=0 the variance term vanishes. This result

generalizes by induction to d-dimensional images. %

Blurring away noise has a price, namely an increased

(location) bias:

I(x){

ð
x0[X

I(x{x0).G(x0; t)dx0 ð27Þ

It is a consequence of the linear diffusion equation (7)

that blurring with the Gaussian kernel introduces a

location bias; the largest bias occurs around the edges

in the image (so-called edge migration) whereas large

homogeneous areas remain largely unchanged.

Classification in the Presence of Noise

Until now, we have only examined the influence of

additive noise and blurring on the distorted image

Ie(x). In the sequel, we will incorporate these aspects

into the statistical model of the image, which forms the

basis of minimal error rate segmentation as sketched

above. Let z=I(x) denote the set of vectorial-derivative

features derived from the image. When we assume that

the additive noise term is independent of the coordi-

nate in the image, the resulting marginal probability

density function can, in the presence of noise, be

written as a convolution:34

pe(z)~

ð
<d

p(z{z0)p(e(z0; s2))dz0 ð28Þ

with e(zk;s2) indicating the noise added to the feature

vector zk. The resulting marginal probability density

function, pe(z), is wider than the noise-free density p(z).

Writing the marginal density as p(z)=Sj p(z|vj)P(vj),

equation (28) can be rewritten as

pe(z)~

ð
<d

X
j
p(z{z0 vj

�� )P(vj)p(e(z
0; s2))dz0 ð29Þ

which equals

pe(z)~
X

j
P(vj)

ð
<d

p(z{z0 vj

�� )p(e(z0; s2))dz0 ð30Þ

It is clear that the additive noise term entails a

convolution of each class-conditional distribution with

the probability density function p(e(zk;s2)). Conse-

quently, the class-conditional distributions will have a

larger overlap in the presence of noise which gives a

poorer classification result.

An analytical study of the effect the location bias has

on the (optimal) error rate e*, presupposes that the true

(noise free) function I(x) is known. This is generally not

the case in practical image processing. We propose to

use the overall error rate, e(S), to determine the

optimal blurring that results in the best possible

segmentation result, where the error rate e(S) is

considered a function of the sampling scheme S in

the linear scale space.

A Statistical Approach to Scale
Selection

Segmentation approaches based on features from the

(linear) scale space require a mechanism for scale

selection, i.e., the dimension and entries in the

sampling scheme, S. Neglecting this issue will lead to

inferior segmentation results as was shown by pre-

vious experiments.9,21 For most practical segmentation

tasks, a specific range of meaningful scales S can be

specified. This is especially the case in tomographic

medical imaging (MRI, CT) where the absolute size of

each voxel is completely determined by the acquisition

protocol. Scale selection requires the following two

choices: the limits of the sampled interval in the scale

space, min(S) and max(S), and the sampling density in

the scale space, card(S). (Note that the scale space is

normally logarithmically sampled.31 If the features do

only consist of images blurred at different scales, an

obvious choice for the minimal scale is the so-called

‘inner scale’ of the image, i.e., no blurring takes place,

so min(S)=0. When derivative features are also

included in the feature set z, a larger minimal scale

should be chosen, min(S)>0. With respect to the

maximal scale, the choice is determined by the maxi-

mal size of the segments one wants to detect, the noise

level in the image material and the scale of the under-

lying structures that are being imaged. We propose the

following algorithm for selecting the optimal sampling

of the scale space:

Scale selection algorithm: scale-invariant segmentation

1. Compose a set of training images with a uniform

prior class distribution.

2. Choose the minimal scale min(S). If only blurred

features are included, min(S) can be the inner scale
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of the image. Otherwise, the minimal scale needs to

be varied also, min(S)>0.

3. Choose a maximal scale, max(S), and a (logarithmic)

sampling scheme S.

4. Train a statistical classifier with the chosen features

from the scale space, I(x,S).

5. Compute the error rate e(S) of the classifier on a test

set that is representative for the desired application.

If sufficient, stop; otherwise, choose a new (minimal

and) maximal scale, and sampling scheme, go to

step 4.

Experiments

We performed a number of experiments with the

algorithm for scale selection defined above. First, a set

of quality measures is defined that makes it possible to

study the effect of varying the sampling scheme in the

scale space on the accuracy and the homogeneity of the

obtained segmentation results. Subsequently, a classi-

fier is chosen and used in an experiment with synthetic

data to illustrate the theoretical results. Finally, a

number of experiments with segmentation of dynamic

contrast-enhanced MR images is performed.

Spatial Quality Measures

The performance of a segmentation algorithm can be

assessed with true class labelling by computing a

contingency table A, with ai,j the number of voxels that

are classified into class i while belonging to class j. The

correctness Q, the fraction of voxels that is classified

correctly, and k, the same fraction corrected with

respect to the prior distributions, are derived from the

contingency table35 as follows:

Q~1{e~

Pc
i~1

ai,i

Pc
i~1

Pc
j~1

ai,j

ð31Þ

k~
Q{q

1{q
, q~

Pc
i~1

(
Pc
g~1

ai,g.
Pc
g~1

ag,i)

(
Pc
i~1

Pc
j~1

ai,j)
2

ð32Þ

These performance measures do not take into account

whether misclassified voxels are scattered all over the

image or form one or a few connected clusters. To

assess the effect of including images at different scales

in the training set, we modified two existing spatial

quality measures36 by making them isotropic. Both

spatial quality measures are based on the local entropy

of the class labels in the labelled image and measure

essentially spatial scatter and dispersion in a neigh-

bourhood W(x). Define the entropy image H(x):

H(x)~{
Xc

j~1

Pj
. ln (Pj)

ln (c)
with Pj~

P
x[W(x)

S(x)~j

card(W(x))
ð33Þ

where c denotes the number of classes, S(x) the label

assigned to voxel x, card(e) the cardinality function

(number of elements) and W(x) a circular window.

Define the class-conditional confidence hj as

hj:1{

P
x[vj

H(x)

card(vj)
ð34Þ

with vj denoting the set of voxels truly belonging to

class j. The size of the circular neighbourhood W(x)

determines the scale at which the confidence is

computed.

The class-conditional confidence is the estimated

mean of the local entropy in the labelled image. We

define also a dispersion measure, the class-conditional

uniformity, to capture the variation around this mean.

Define the class-conditional uniformity cj as

cj:1{
Xq
i~1

Pi,j
. ln (Pi,j)

ln (q)
with Pi,j~

card(li)

card(vj)
ð35Þ

where li={x|ijH(x)<i+1} denotes the set of voxels

xsX that have the entropy level i. The class-

conditional confidence hj expresses the average entropy

in a neighbourhood W(x) whereas the uniformity cj is a

measure for the dispersion around hj. Both spatial

quality measures are computed for the labelled image

S(x).

Choice of Classifier

The optimal classifier with the error rate e* generally

entails a non-linear partitioning of the feature space in

regions R1, ..., Rc. Neural networks with one hidden

layer have been shown to approach the minimal error

rate classifier when the number of hidden nodes and

the size of the learning set both go towards infinity.37 It

may even approximate a quadratic discriminant

exactly after training with a gradient-descent learning

algorithm.38 Finally, a feed-forward neural network
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with one hidden layer is capable of approximating any

continuous discriminant function.39,40

In our application, segmentation of dynamic MR

images, the type of the underlying feature distributions

is unknown so we decided to use a multi-layer feed-

forward neural network as classifier. For neural

networks to perform best in classification tasks, each

output node should represent a specific class.41 As it

has been shown that feed-forward neural networks

approach the Bayes minimal error rate classifier, the

elements of the output vector oi can be interpreted as

posterior probabilities, oj B P(vj|z), j = 1, ..., c.

Experimental Set-Up

A set of experiments with perfusion MR images of

patients with bone tumours (Ewing’s sarcoma) was

conducted. The perfusion of blood in the tissue under

study is assessed by continuously acquiring a sequ-

ence of MR images while a bolus of MR contrast

tracer (Gd-DTPA) is given intravenously.42 The pri-

mary goal was to develop a scale-invariant, signal-

driven segmentation approach based on a statistical

classifier. It was shown9,21,42 how features derived

from pharmacokinetic functions, fitted onto the

dynamic MR signal, can be used for segmentation

into viable tumour, non-viable (necrotic) tumour and

healthy (normal) tissue. However, this segmentation

approach requires excessive computation since a

pharmacokinetic model has to be fitted to the dynamic

MR signal associated with each voxel. Instead, we

developed a segmentation approach based on the

normalized dynamic MR signal, I(x,t), given by the

dynamic sampling scheme t=1, ..., T.

We propose a signal-driven segmentation algorithm,

which will be based on a sample obtained from the

linear scale space:

I(x,t,t)~I(x,t) � G(x; t), t[S ð36Þ

with G(x;t) denoting the Gaussian kernel. Previous

experiments9,21 have indicated that the inclusion of

derivative features I(x,t)*DhG(x;t) does not improve the

segmentation result for bone tumours. Consequently,

such derivative features were omitted in the experi-

ments reported here. Instead, it will be shown how

dynamic MR images can be segmented from the shape

of the dynamic MR signal (see Figure 1).

The dynamic MR signal is affected by both a random

Figure 1. The perfusion MR signal associated with each voxel is obtained from the MR image sequence, pre-processed and

provided as input to the neural network. A convolution with the MR image sequence results in a labelled (segmented) image.
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and a systematic distortion: the noise introduced by

the MR device and the MR signal fluctuations caused

by the heartbeat. The fluctuations associated with the

heartbeat are caused by a combination of uneven

mixing of the bolus in the blood, the pumping of the

left ventricle and the flow sensitivity attributed to the

chosen MR sequence. Although a simple low-pass

filtering may eliminate a large part of the high-

frequency noise, this technique is not suitable in our

application because important high frequencies that

characterize the uptake speed of the contrast tracer

would also be heavily damped. Morphological opera-

tors, on the other hand, retain the large edges. The

morphological min–max filter,43 which we used for

preprocessing, is defined as

Ifilter(t,w)~

max
y[b

y~min
t[b

(I(t))

	 

zmin

y[b
y~max

t[b
(I(t))

	 


2
ð37Þ

with b(t)={tx(wx1)/2, t+(wx1)/2} and I(t) denoting the

intensity associated with voxel I(x,t).

Generally, the strength of signals obtained from an

MR scanner depends on several factors such as the

tumour location, the weight of the patient and the

relaxivity of the surrounding tissue. The most impor-

tant factor determining the signal amplitude and level

is, however, the affine scaling that is performed by the

software on the MR scanner. Besides this scaling, there

is also an intensity offset that differs between the

various scans as well as within one scan. To correct for

these differences, an offset estimation is made by

calculating the mean of the sample points before t0
(when injection with paramagnetic tracer is started).

The signal Î(t) is normalized according to

Î (t)~I(t).RS{Ioffset, t[T ð38Þ

with RS denoting the scale factor, obtained from the

MR scanner and Ioffset the intensity offset.

Before our approach to scale selection can be evalu-

ated on the dynamic MR images, the correct segmenta-

tion result, i.e. the correct class membership of each

voxel, is required. In some applications, the correct

segmentation result has to be specified by a mask,

annotated by a human expert.8 However, such manu-

ally drawn annotation masks are subject to intra- and

inter-observer variation. Moreover, in our application

the desired segmentation result cannot be annotated in

the MR image sequence as complex characteristics of

the dynamic MR signal are indicative for the correct

class membership of each voxel. Instead, we benefit

from the fact that for bone sarcoma the postoperative

histological specimen is regarded as an objective gold

standard when it comes to tissue classification. In our

application, segmentation masks are obtained by

matching postoperative specimens with the MR

images according to a method developed in Egmont-

Petersen et al.42 and applied in Frangi et al.9 and

Egmont-Petersen et al.21 The differences in scale,

orientation and position between the MR section and

the histological macroslice are computed using a

method based on the principal axes of the coordinate

sets obtained by sampling the contours;44 for details

see Egmont-Petersen et al.21 The matched histological

macroslices constitute masks that indicate the true

class membership of each voxel in the MR images.

Experiment with Synthetic Data. The purpose of

the first experiment was to verify the theoretical

results (Theorem 1 and Lemma 2) regarding the effect

of magnification on the change in the overall and

class-conditional error rates. Three synthetic MR

image sequences, each with two segments repre-

senting viable tumour and healthy tissue, were gener-

ated. Each MR image sequence consisted of 25

dynamic images with a resolution of 256r256 pixels.

In each sequence, a circle with a specific radius,

respectively 256 pixels, 81 pixels and 26 pixels,

indicates the tissue ‘viable tumour’, which resulted in

the following prior distributions: PI1(viable)=0.79,

PI2(viable)=0.079 and PI3(viable)=0.008. The segment

‘viable tumour’ was based on the MR signal extracted

from a central part of an area with viable tumour in a

typical patient, as indicated by the registered mask. A

dynamic MR signal representative for ‘healthy tissue’

was extracted in a similar way. Gaussian-distributed

noise with a zero mean and the variances s2(healthy)=
5, s2(viable)=10 was added to the respective signals,

and the three synthetic image sequences were

combined according to the three masks. A neural

network was subsequently trained during 5000 cycles

with standard back-propagation45 to segment the

images, based on a training set with 10,000 patterns

where each of the two classes had the same prior

probability, P(viable)=P(healthy). The feed-forward

network had 25 input nodes, eight hidden nodes and

one output node, associated with the class viable

tumour. In the training set, the desired output was set

to 1 for viable tumour and 0 for healthy tissue. The

neural network was subsequently applied to the three

synthetic image sequences (see Figure 2).

The performance of the trained neural network was

analysed in two ways on the three resulting output
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images: according to an uncorrected segmentation

scheme (the output image obtained by convolution

with the neural network was classified using the

winner-takes-all rule, equation (2)); and according to

a corrected scheme: each of the three output images was

post-processed according to the rule of McMichael,30

equation (13), with the correct prior probability, before

the winner-takes-all rule was applied.

The results are shown in Table 1. This experiment

confirms that the class-conditional performance is un-

affected by the change in prior probability, PI(viable),

in the uncorrected situation. To optimize the overall

error rate Q, the correction formula, equation (13),

should be applied, whereas constant class-conditional

error rates can be obtained from a uniform prior (in the

training set), thereby leaving the output of the classifier

uncorrected.

First Experiment with MR Image Sequence.
For all further experiments, we constructed a pattern

set consisting of data chosen at random from six

different patients with bone tumours using the masks

as defined from the corresponding histological

images.9,21 The complete pattern set contained the

dynamic MR signals of each individual voxel, and

was subsequently split into a training and a test set

consisting of 10,000 and 2500 voxels, respectively.

In an earlier pilot experiment, we had used a

training set in which the prior probabilities for the

three classes were as observed in the set of images.

These experiments gave poor classification results as

the networks were unable to classify correctly any

dynamic MR signal pertaining to the most infrequent

class, viable tumour. Therefore, in our training set the

three classes had the same prior probability (a uniform

prior). The test pattern set had prior probabilities

PI(vj), j=1, ..., c, as averaged over the whole MR

image data set, because we eventually want to select a

neural network that performs well on representative

image material. The width of the min–max filter and

the number of hidden nodes were both varied. The

results on the test set, consisting of 2500 dynamic MR

signals, are shown in Table 2.

The first experiment (top part of Table 2) indicates

that eight hidden nodes result in a good performance

on the test set, especially for |b|>7. We experimented

further with this network topology while increasing

the width |b| of the min–max filter. A filter width of

15 appeared to perform best in combination with a

Uncorrected Corrected

Circle 256 Circle 81 Circle 26 Circle 256 Circle 81 Circle 26

1xeViable 0.71 0.72 0.71 0.88 0.44 0.00
1xeHealthy 0.96 0.96 0.96 0.71 0.99 1.00
k 0.32 0.13 0.05 0.26 0.10 0.01
Q 0.77 0.94 0.96 0.84 0.95 0.99

Table 1. Class-conditional correctness, kappa and overall correctness, for all three synthetic MR
images with no correction, and corrected for the different prior distributions

Figure 2. The segmented synthetic MR images contain different fractions of voxels that belong to the class viable tumour

(indicated with a bright colour). The radii of the three viable segments are 256, 81 and 26 pixels, respectively.
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neural network with eight hidden nodes. In the

remaining experiments in this article, we have used

these values for filter width and number of hidden

nodes.

Experiment with Scale Selection Approach. In

this experiment, we investigated our approach to

scale selection and studied the effects of varying the

sampling of the scale space on performance. As

earlier experiments with the same image material

indicated that derivative features do not contribute to

the segmentation of the dynamic MR images of bone

tumours,9,21 we decided solely to use blurred versions

of the dynamic MR images as extra input to the

classifier. As blurring is a regularization operation, it

is to be expected that the classifier that performed

optimally in the first experiment will also perform

well when the blurred image data are added as input.

Of course, the signal intensity obtained from the

original image sequence is highly correlated with

the intensity obtained from the blurred versions of the

same dynamic MR images.

The previous experiment confirmed the added value

of the min–max filter for pre-processing the dynamic

MR signal. This result may indicate that a spatial (grey-

level) morphological smoothing operator such as an

opening46,47 can improve the segmentation result.

Furthermore, it makes it possible to broaden the

scope of our experimental evaluation of the approach

to scale selection by experimenting also with feature

images from the morphological scale space. Let I(x) be

a single MR image at time t. The morphological

opening is defined as

Opening(I(x),B)~max
x0[B

(x0~min (I(x))
x[B

) ð39Þ

where B denotes the kernel, which is in this case an

isotropic disc, r=rad(B).46,47 The size of the kernel,

measured in millimetres, must again be equal for all

MR scans so the absolute scales are kept constant for

all patients.

We used the ‘inner scale’ of the dynamic MR images

in conjunction with either the image obtained from the

linear or the morphological scale space, respectively.

The maximal scale, max(S), was varied while studying

the resulting performance of the trained neural net-

works on the representative test set. The kappa and

correctness measures as well as the spatial quality

measures were computed. Class-conditional confi-

dence and uniformity were solely computed for the

classes viable and non-viable tumour. Table 3 shows

the width of the Gaussian and morphological kernels,

measured in square millimetres.

When comparing features from the linear scale

space, we provided as input to the neural classifier

the two largest kernels (t=12 and 15 mm2) resulting in

Filter
width

Number of hidden nodes

1 2 3 4 8 16

0 k 0.3559 0.4589 0.4765 0.4864 0.4820 0.4906
Q 0.6665 0.7522 0.7672 0.7711 0.7664 0.7743

5 k 0.3549 0.4569 0.4665 0.4765 0.4995 0.4953
Q 0.6657 0.7515 0.7573 0.7664 0.7818 0.7782

7 k 0.2783 0.4567 0.4652 0.4706 0.4845 0.4920
Q 0.5919 0.7459 0.7537 0.7577 0.7668 0.7739

11 k 0.2794 0.4865 0.4921 0.4956 0.5104 0.5159
Q 0.5955 0.7656 0.7727 0.7727 0.7849 0.7889

Filter width

8 hidden nodes 13 15 17 21 25 29

k 0.5106 0.5166 0.5100 0.5081 0.5103 0.4984
Q 0.7865 0.7889 0.7861 0.7873 0.7857 0.7802

Table 2. Correctness and kappa values obtained for different combinations of the filter width |b|
in equation (36), and network topology. All statistics were computed on a representative test set

containing 2500 patterns. Bold face indicates well-performing configurations
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the highest kappa and correctness measures. The local

confidence hj (averaged over all six patients) was

maximal for t=12 mm2. As shown by the resulting

image of a patient in Figure 3(c), the large artery was

correctly labelled as healthy tissue and the scatter in

the image was reduced. For features obtained from the

morphological scale space, the disc with a radius of

10 mm2 resulted in the best performance as measured

with the kappa and correctness measures. The spatial

quality measures fluctuate as a function of the disc size

but, more important, the spatial quality is poorer than

obtained with features from the linear scale space.

Consequently, the amount of scatter in the labelled

image (e.g., Figure 3d) is higher than that obtained

with features from the linear scale space.

This experiment indicates the feasibility of using the

classification result obtained with a representative test

set to choose the appropriate set of scales in the linear

or morphological scale spaces. Another example can be

seen in Figure 4, showing the segmentation results for

a different patient.

The performance measures can be used to find the

scale(s) that give the best segmentation result for the

image material at hand (represented by the test set). It

is clear that the set of scales S resulting in the maximal

number of correctly segmented voxels does not have to

coincide with the set of scales with the highest maxi-

mal confidence. Consequently, a trade-off may have to

be made between performance and spatial coherence.

(a) (b)

(c) (d)

Figure 3. Segmentation results for one patient (Ewing’s

sarcoma present in the tibia), with the white regions denot-

ing viable tumour, the grey regions non-viable tumour and

the black regions background/healthy tissue: (a) the histolo-

gical mask; (b) the result of a voxel-based classification (first

experiment); (c) adding features from the linear scale space;

(d) adding features from the morphological scale space.

Kernel s2

Kernel size (mm2)

5 8 10 12 15

Gauss: k 0.5649 0.5811 0.5674 0.5874 0.5964
linear Q 0.8772 0.8796 0.8788 0.8852 0.8858
scale h1 0.7469 0.7398 0.7847 0.8549 0.7983
space c1 0.2541 0.2493 0.3262 0.4399 0.2977

h2 0.6422 0.7160 0.6986 0.7466 0.6993
c2 0.2251 0.3535 0.2498 0.2780 0.2390

Disc: k 0.4670 0.4754 0.5078 0.4780 0.4805
morphological Q 0.8434 0.8465 0.8604 0.8434 0.8478
scale h1 0.6561 0.6426 0.6953 0.6404 0.7067
space c1 0.2077 0.1944 0.2038 0.2137 0.2110

h2 0.5287 0.6446 0.5365 0.6263 0.5565
c2 0.1375 0.1829 0.1281 0.2250 0.1009

Table 3. Kappa and correctness measures, confidence and uniformity, as computed by applying
the neural networks to the test set. The most suited kernel size for the linear scale space is

12–15 mm2; for the morphological scale space it is 10 mm2. Bold face indicates well-performing
configurations
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Such performance trade-offs often occur in practice

where an algorithm has to fulfil more, possibly contra-

dictory requirements. For a discussion of this issue see,

for example, Egmont-Petersen et al.35 and Karthaus

et al.48

The best neural network has been used to segment a

3D dataset consisting of eight MRI sections of a bone

tumour located in the bone marrow of a femur (hip).

The segmentation result was visualized (see Figure 5)

by combining two volume rendering techniques: iso-

surface rendering and maximal-intensity projection.

Iso-surface rendering was used to indicate healthy

bone marrow, which has a high intensity in T1-

weighted MR images. The same technique was used

to display the extent of the viable tumour remnants by

thresholding the output of the neural network. Three

maximal intensity projections of the image data,

sagittal, transversal and coronal, depict the original

MR imaging data.

Discussion

The experiments we performed with synthetic and real

MR images support the theoretical results presented in

this paper. It is possible to use a statistical classifier to

perform scale selection in the linear and morphological

scale spaces. Thereby, the best (implicit) trade-off

(a) (b)

Figure 5. Visualizations of a 3D MRI dataset showing nests with viable tumour in a femur (hip): (a) the nests shown with

dark-grey have been detected by a neural network. The light-grey (iso-)surfaces indicate the healthy bone marrow inside the

femur. The sides and the bottom show maximal intensity projections of the 3D MRI dataset; (b) the bone marrow is omitted,

allowing the observer to obtain a 3D impression of the size of the remnants with viable tumour.

(a) (b)

(c) (d)

Figure 4. Segmentation results for another patient (Ewing’s

sarcoma), with the white regions denoting viable tumour,

the grey regions non-viable tumour and the black regions

background/healthy tissue: (a) the histological mask; (b) the

result of a voxel-based classification (first experiment); (c)

adding features from the linear scale space; (d) adding

features from the morphological scale space.
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between location bias and variance is being made for a

given test set.

Lindeberg showed that it is difficult to identify the

optimal scale for a particular feature detector.33 It

should be kept in mind that the optimal set of scales

depends on the amount of noise present in the images

and the typical size of the (connected) segments one

wants to find. In general, finding an analytical solution

to this problem may be intractable. Our approach to

scale selection is a pragmatic alternative, which may

be applied to signal-driven segmentation algorithms

based on spatial information from the linear or mor-

phological scale space. The approach results in a

particular trade-off between (location) bias and var-

iance, namely that which minimizes the error rate on a

representative test set. One may prefer a smooth,

labelled image with a high local confidence and a

smaller correctness over a labelled image with more

scatter and a higher number of correctly segmented

voxels. The optimal trade-off between such conflicting

criteria can only be determined by the end user. If one

criterion is being used, the optimal sampling of the

scale space can be found through experiments.

We introduced isotropic quality measures for study-

ing the effect of varying the scale of the images

provided as input to the neural net classifier. Such

measures make it possible to quantify homogeneity

aspects of a segmentation result, which may otherwise

have been left for subjective assessment; for a discus-

sion see, for example, Zhang.49 We feel that especially

the local confidence measure results in plausible

measures for the amount of scatter in a labelled image.

It is clear that for a signal-based segmentation

classifier to be uncommitted with respect to scale, the

prior class distribution in the training set needs to be

uniform. This is a direct consequence of Theorem 1,

Lemma 1 and Corollary 1. Experiments reported else-

where indicate that, in general, for the linear discrimi-

nant and classification based on logistic regression,50

the best training result is obtained for a uniform prior

distribution. The experiment with the synthetic image

data confirms that the class-conditional error rates

remain constant for a varying prior. Consequently, we

recommend not using the formula of McMichael,

equation (13), to correct for a different prior distribu-

tion, unless there is a clear expectation regarding the

prior probability distribution of the different types of

segments in a particular image. In other words, we

advocate for an uncommitted segmentation approach

based on a uniform prior class distribution. In a

particular application, it may be desirable to optimize

the performance, thereby choosing a representative

(non-uniform) class distribution.

It is well known that trained classifiers suffer from

the curse of dimensionality, which impedes generali-

zation when the number of features becomes high. This

so-called peaking phenomenon51,52 implies an increas-

ing difficulty in discerning discriminative from useless

features as the dimensionality of the feature space

increases.53 The peaking phenomenon can prevent our

scale selection algorithm from choosing the best set of

scales.

Conclusion

In this article, we have analysed the problem of scale

selection for signal-driven segmentation algorithms

based on pattern classifiers. Theoretical results indicate

that, in the presence of noise, the sampling of the

(discrete) linear scale space entails a trade-off between

(location) bias and variance. Based on this analysis, we

propose to use the overall error rate obtained on a test

set to optimize the sampling of the scale space. It is

furthermore shown that the class-conditional error rate

(per type of segment) remains constant per unit of

area under zooming. This advocates for building

an uncommitted signal-driven segmentation approach

based on a uniform prior class distribution in the

training set.

The optimal set of scales depends on several factors

including the noise level present in the image material,

the prior distribution of the different types of seg-

ments, the class-conditional distributions associated

with each type of segment as well as the actual size of

the (connected) segments. Often, conflicting criteria

need to be fulfilled in order to obtain the best possible

trade-off between variance and location bias. Experi-

ments with a neural net classifier developed for

segmentation of dynamic MR images illustrate these

results. The experiments also show that adding spatial

features to the classifier, extracted from the linear or

morphological scale spaces, improves the segmentation

result compared to a signal-driven approach based

solely on the dynamic MR signal. The performance on

a set of test images is used to select the two scales that

result in the best performance.

Two novel spatial quality measures were introduced,

both characterizing spatial properties of a labelled

image. These measures as well as the known statistical

quality measures correctness and kappa, have been
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used to quantify the improvement of the obtained seg-

mentation result. According to the computed quality

measures, the linear scale space is the best configura-

tion for this tumour tissue classification task.
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